… just a quick hit to provide working links over the holidays. Please excuse the roughness of the design.

(h/t Product-Growth)

1. Getting Started

The first thing is to understand AI PM is just a subset of PM. Many of the tasks are the same, but you’re building AI features or products, and using AI tools even more.

AI Product Management Basics:

  • Prompt Engineering
  • Context Engineering (RAG)
  • AI Evals & Testing
  • AI Prototyping/Vibe Coding
  • Agent Workflows

Key Differences from Traditional PM:

  • Technical depth required
  • Building AI features + products
  • Higher expectation of AI tool use

Deep Resources:


2. Prompt Engineering

It’s the #1 skill for great agents + productivity.

Free Guides:

Techniques Grid:

COTROLESEXAMPLES
Few-ShotConstraintsXML Tags
Chain PromptsAutonomyArtifacts
Step-by-StepPersistSelf-Consistency

Tools:

  • Anthropic Claude
  • ChatGPT
  • ChatPRD

3. Context Engineering & RAG

Vector Databases:

  • Pinecone
  • Chromatic
  • Qdrant

Knowledge Graphs:

  • Neo4j
  • GraphRAG

Frameworks:

  • LlamaIndex
  • LangChain

RAG vs Fine-Tuning vs Prompting:

  • Use prompting for simple instructions and general tasks
  • Use RAG when you need to retrieve specific knowledge or documents
  • Use fine-tuning for specialized domains with consistent style/format needs

Context Engineering Guide: Step-by-Step


4. AI Prototyping & Vibe Coding

No-code first:

  • Lovable
  • Bolt
  • v0
  • Replit Agent
  • Devin

IDE first:

  • Cursor
  • Windsurf
  • GitHub Copilot
  • Codeium

Others:

  • Jules
  • Codex

Infrastructure Tools:

  • Supabase
  • Firebase
  • Clerk
  • Netlify
  • Vercel
  • Railway
  • DigitalOcean
  • GitHub

Guides:


5. AI Agents & Agentic Workflows

Agent Platforms:

  • n8n
  • Crew AI
  • Zapier
  • AutogenAI
  • Make
  • LlamaIndex
  • LangGraph
  • LangChain
  • Lindy
  • Lamini
  • Haystack
  • Cassidy
  • FlowWise

Techniques:

  • Tool use
  • MCP
  • Agent Architectures
  • ReAct
  • A2A RAG

Guides:


6. AI Evals, Testing & Observability

Evaluation Platforms:

  • X (Twitter)
  • Arize
  • Braintrust
  • Weights & Biases

Testing Approaches:

  • Unit Tests → LLM Judge/Error Analysis → TNF/TPR
  • Human Eval → Model Eval Train/Test/Dev → A/B Tests

Key Metrics:

  • Accuracy / Precision / Recall
  • Latency (P50, P95, P99)
  • Cost per request
  • User satisfaction

Virtuous Cycle Diagram: Build → Evaluate → Iterate → Observe → (repeat)

Resources:


7. Foundation Models

Leading Models:

  • Best reasoning & coding: Claude (Anthropic)
  • Most versatile: GPT-4
  • Multimodal leader: Gemini
  • Real-time data: Perplexity
  • Long context: Claude
  • Efficient: Gemini Flash
  • Open source: Llama
  • Multilingual: Command R+

Model Types:

  • LLM (Large Language Models)
  • LCM (Large Code Models)
  • LAM (Large Action Models)
  • MoE VLM (Mixture of Experts Vision-Language Models)
  • SLM (Small Language Models)
  • MLM (Multimodal Language Models)
  • SAM (Segment Anything Models)

8. AI PRDs & Building

Essential Frameworks:

  • AI Product Strategy Template
  • AI PRD Structure
  • Evaluation Framework
  • Risk Assessment Matrix

Free Templates:

Common Mistakes:

  • No fallback strategy
  • Ignoring latency/cost
  • Building without evals
  • Overfitting to demos

Key Resource:


9. Career Resources

Breaking Into AI PM:

  1. Build your AI PM background
  2. Create an AI PM Portfolio
  3. Update your Resume + LinkedIn
  4. Get Referrals to AI PM Jobs
  5. Be Over-Prepared for Unique Interviews:
    • a. Vibe Coding
    • b. AI ethics + guardrails

Key Guides:

Tools & Communities: